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Остановка процесса интегрирования при 
выполнении условия

Определение момента падения на землю точки, движущейся по 
баллистической траектории

Уравнения движения точки в плоскости в однородном поле силы тяжести
In [691] :=

eq = {x''[t]  0, y''[t]  -g };

Начальные условия
In [692] :=

ic = {x[0]  0, y[0]  0, x'[0]  V0 Cos[φ0], y'[0]  V0 Sin[φ0]};

Параметры
In [693] :=

p = {g  9.81, V0  10, φ0  45 °};

In [694] :=

sol = NDSolve[{eq, ic} //. p, {x[t], y[t], x'[t], y'[t]}, {t, 0, 2}]

Out[694]=

x[t]  InterpolatingFunction
Domain: {{0., 2.}}
Output: scalar [t],

y[t]  InterpolatingFunction
Domain: {{0., 2.}}
Output: scalar [t],

x′[t]  InterpolatingFunction
Domain: {{0., 2.}}
Output: scalar [t],

y′[t]  InterpolatingFunction
Domain: {{0., 2.}}
Output: scalar [t]



Траектория точки
In [695] :=

ParametricPlot[{x[t], y[t]} /. sol, {t, 0, 2}, AxesLabel  {"x, м", "y, м"}]

Out[695]=
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Траектория продолжилась и при y<0.
Как остановить процесс интегрирования при достижении нулевой высоты?
WhenEvent[условие, что делать]
или
WhenEvent[условие, {что делать,что делать,что делать,что делать}]

In [696] :=

sol2 = NDSolve[

{

eq,

ic,

WhenEvent[y[t] < 0, "StopIntegration"]

} //. p,

{x[t], y[t], x'[t], y'[t]}, {t, 0, 2}]

Out[696]=

x[t]  InterpolatingFunction
Domain: {{0., 1.44}}
Output: scalar [t],

y[t]  InterpolatingFunction
Domain: {{0., 1.44}}
Output: scalar [t],

x′[t]  InterpolatingFunction
Domain: {{0., 1.44}}
Output: scalar [t],

y′[t]  InterpolatingFunction
Domain: {{0., 1.44}}
Output: scalar [t]

Процесс интегрирования остановился при t = 1.44 c, в момент достижения нулевой высоты.

Время остановки извлекается из решения
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In [697] :=

sol2〚1, 1〛

Out[697]=

x[t]  InterpolatingFunction
Domain: {{0., 1.44}}
Output: scalar [t]

In [698] :=

sol2〚1, 1, 2〛

Out[698]=

InterpolatingFunction
Domain: {{0., 1.44}}
Output: scalar [t]

In [699] :=

sol2〚1, 1, 2, 0〛

Out[699]=

InterpolatingFunction
Domain: {{0., 1.44}}
Output: scalar 

In [700] :=

sol2〚1, 1, 2, 0, 1〛

Out[700]=

{{0., 1.4416}}

In [701] :=

sol2〚1, 1, 2, 0, 1, 1, 2〛

Out[701]=

1.4416

In [702] :=

tk = sol2〚1, 1, 2, 0, 1, 1, 2〛;

Траектория точки до момента падения на землю
In [703] :=

ParametricPlot[{x[t], y[t]} /. sol, {t, 0, tk}, AxesLabel  {"x, м", "y, м"}]

Out[703]=

2 4 6 8 10
x, м

0.5

1.0

1.5

2.0

2.5

y, м

Условие можно задать функцией, которая вычисляется только для аргумента-числа:

In [704] :=

h0Event[x_?NumericQ] := x < 0;
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In [705] :=

sol2 = NDSolve[

{

eq,

ic,

WhenEvent[h0Event[y[t]], "StopIntegration"]

} //. p,

{x[t], y[t], x'[t], y'[t]}, {t, 0, 2}];

In [706] :=

Изменение динамических переменных

Отскок от земли
In [707] :=

h0Event[x_?NumericQ] := x < 0;

При достижении нулевой высоты (ударе о землю) меняем направление вертикальной 
скорости на противоположное с коэффициентом меньше 1, т.е. моделируем мгновенный 
отскок с потерей кинетической энергии

In [708] :=

sol = NDSolve[

{

eq,

ic,

WhenEvent[h0Event[y[t]], y'[t]  -0.7 y'[t]]

} //. p,

{x[t], y[t], x'[t], y'[t]}, {t, 0, 4}];

ParametricPlot[{x[t], y[t]} /. sol, {t, 0, 4},

AspectRatio  1/ GoldenRatio, AxesLabel  {"x, м", "y, м"}]

Out[709]=
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Сохраняем координаты x точек падения

Введем в уравнение еще одну переменную c[t], значение которой будет увеличивать на 1 
при регистрации события. Эта переменная дискретная и будет изменяться скачкообразно 
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(увеличиваться на 1) при наступлении события y<0. Переменная c[t] включается в список 
динамических переменных функции NDSolve, а также при помощи параметра DiscreteVari-
ables указывается, что эта переменная  является дискретной.

In [710] :=

h0Event[q_?NumericQ] := q < 0;

In [711] :=

sol = NDSolve[

{

eq,

ic, c[0]  0,

WhenEvent[h0Event[y[t]], {y'[t]  -0.7 y'[t], c[t]  x[t]}]

} //. p,

{x[t], y[t], x'[t], y'[t], c[t]}, {t, 0, 10}, DiscreteVariables  c[t]];

In [712] :=

Plot[c[t] /. sol, {t, 0, 4}]

Out[712]=
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Функция c[t] будет скачкообразно изменяться до значения координаты х точки падения 
тела.

Включение и выключение силы
Предположим, что тело падает на деформируемую поверхность и при y < 0 на тело 
начинает действовать “выталкивающая” сила упругости, которая возникает при 
деформации поверхности. Предположим также, что эта сила пропорциональная глубине δ 
= -y и скорости деформации dδ/dt и направлена вверх:
Fn = k1*δ + k2*(dδ/dt) пока y<0.

Уравнения движения

В уравнение для y добавим силу Fn, которую умножим на дискретную переменную c[t],   
принимающую значения 1 или 0 (1 если y<0).

In [713] :=

eq = {x''[t]  0, y''[t]  -g + c[t]* Fn/ m};
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Начальные условия
In [714] :=

ic = {x[0]  0, y[0]  0, x'[0]  V0 Cos[φ0], y'[0]  V0 Sin[φ0]};

Параметры

К списку параметров добавим массу, выражение для силы Fn, а также коэффициенты 
жесткости и демпфирования поверхности:

In [715] :=

p = {g  9.81, V0  10, φ0  45 °, k1  300, k2  10, m  1, Fn  k1 (-y[t]) + k2 (-y'[t])};

Для функции NDSolve укажем два события y<0 и y>0, при регистрации которых будет 
изменять значение дискретной переменной c[t] (признак действия силы Fn):  

In [716] :=

sol = NDSolve[

{

eq,

ic, c[0]  0,

WhenEvent[y[t] < 0, {c[t]  1}],

WhenEvent[y[t] > 0, {c[t]  0}]

} //. p,

{x[t], y[t], x'[t], y'[t], c[t]}, {t, 0, 10}, DiscreteVariables  c[t]];

In [717] :=

ParametricPlot[{x[t], y[t]} /. sol, {t, 0, 4},

AspectRatio  1/ GoldenRatio, AxesLabel  {"x, м", "y, м"}]

Out[717]=
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In [718] :=

ParametricPlot[{x[t], y[t]} /. sol, {t, 0, 4},

AspectRatio  1/ GoldenRatio, AxesLabel  {"x, м", "y, м"},

ColorFunction  Function[{x, y}, If[y < 0, Red, Blue]], ColorFunctionScaling  False]

Out[718]=

Функции Sow и Reap
Функции Sow (“засевать”) и Reap (“собирать урожай”) используются для сбора результатов 
вычислений.
Далее Sow используется для сохранения значения x[t] при наступлении события y[t]<0 
после изменения знака вертикальной скорости. Чтобы результаты “посева” используется 
Reap, аргументом которой является выражение, в котором происходит “посев”. Функция 
Reap возвращает результат работы функции NDSlove и результаты “посева”, т.е. значения 
x[t] в момент наступления событий y[t]<0.

Уравнения
In [719] :=

eq = {x''[t]  0, y''[t]  -g };

Начальные условия
In [720] :=

ic = {x[0]  0, y[0]  0, x'[0]  V0 Cos[φ0], y'[0]  V0 Sin[φ0]};

Параметры
In [721] :=

p = {g  9.81, V0  10, φ0  45 °};
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In [722] :=

sol = Reap[NDSolve[

{

eq,

ic, c[0]  0,

WhenEvent[h0Event[y[t]], {y'[t]  -0.7 y'[t], Sow[x[t]]}]

} //. p,

{x[t], y[t], x'[t], y'[t]}, {t, 0, 4}]]

Out[722]=

x[t]  InterpolatingFunction
Domain: {{0., 4.}}
Output: scalar [t],

y[t]  InterpolatingFunction
Domain: {{0., 4.}}
Output: scalar [t],

x′[t]  InterpolatingFunction
Domain: {{0., 4.}}
Output: scalar [t],

y′[t]  InterpolatingFunction
Domain: {{0., 4.}}
Output: scalar [t],

{{10.1937, 17.3293, 22.3242, 25.8206, 28.2681}}

Решение дифференциального уравнения 
In [723] :=

sol〚1〛

Out[723]=

x[t]  InterpolatingFunction
Domain: {{0., 4.}}
Output: scalar [t],

y[t]  InterpolatingFunction
Domain: {{0., 4.}}
Output: scalar [t],

x′[t]  InterpolatingFunction
Domain: {{0., 4.}}
Output: scalar [t],

y′[t]  InterpolatingFunction
Domain: {{0., 4.}}
Output: scalar [t]

Сохраненные функцией Sow результаты 
In [724] :=

sol〚2〛

Out[724]=

{{10.1937, 17.3293, 22.3242, 25.8206, 28.2681}}

Сечения Пуанкаре
В теории динамических систем, разделе математики, отображение Пуанкаре (также 
отображение последования, отображение первого возвращения) — это проекция 
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некоторой площадки в фазовом пространстве на себя (или на другую площадку) вдоль 
траекторий (фазовых кривых) системы.
https://ru.ruwiki.ru/wiki/Отображение_Пуанкаре

Уравнение Дуффинга
In [725] :=

eq = x''[t] + δ x'[t] + α x[t] + β x[t]3  γ Cos[ω t];

p = {α  -1, β  0.25, δ  0.1, γ  2.5, ω  2};

sol = NDSolve[{eq, x[0]  0, x'[0]  0} /. p, {x[t], x'[t]}, {t, 0, 100}];

In [728] :=

Plot[x[t] /. sol, {t, 0, 100}, AxesLabel  {"t, c", "x"}]

Out[728]=
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Фазовый портрет
In [729] :=

ParametricPlot[{x[t], x'[t]} /. sol, {t, 0, 100},

AspectRatio  1/ GoldenRatio, Frame  True, AxesLabel  {"x", "x'"}]

Out[729]=
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Сохраним пары координат точки в фазовом пространстве (x[t], x’[t]) в моменты времени, 
когда время кратно 2 π

ω
 и покажем эти точки на графике. 

WhenEventModt, 2 π

ω
, Sow[{x[t], x'[t]}]
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In [730] :=

solp = Reap

NDSolveeq, x[0]  0, x'[0]  0, WhenEventModt, 2
π

ω

, Sow[{x[t], x'[t]}] /. p,

{x[t], x'[t]}, {t, 0, 20 000};

In [731] :=

ListPlot[solp〚2, 1〛, Frame  True, AxesLabel  {"x", "x'"}]

Out[731]=
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