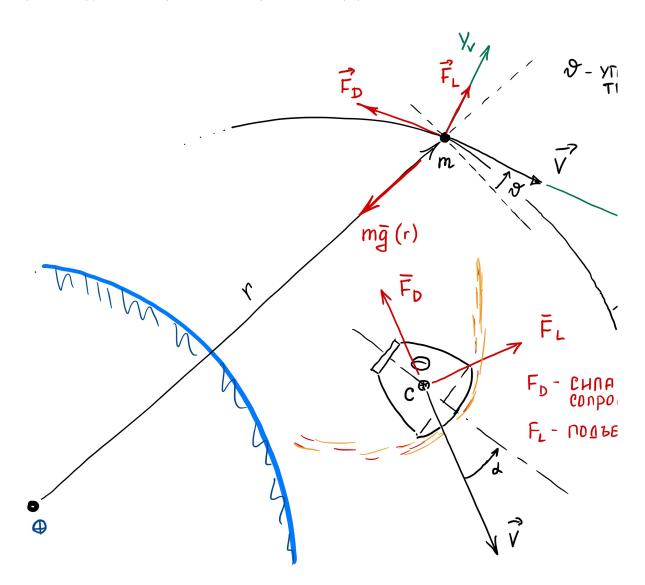
Моделирование движения спускаемого аппарата в атмосфере


Интегрированные математические пакеты

Самарский университет. Кафедра теоретической механики

Юдинцев В. В.

Модель

Рассматривается движение спускаемого аппарата в атмосфере Земли.

Условия

- Вращение Земли не учитывается
- Спускаемый аппарат рассматривается как материальная точка постоянной массы
- Рассматривается движение спускаемого в одной плоскости
- Движение спускаемого аппарата происходит под действием силы тяжести и сил аэродинамического сопротивления

Аэродинамические силы

На спускаемый аппарат при движении в атмосфере действуют аэродинамические силы и моменты.

Аэродинамические силы и моменты зависят от следующих параметров:

- угла атаки спускаемого аппарата;
- плотности воздуха на высоте полета;
- размеров спускаемого аппарата;
- формы спускаемого аппарата.

Аэродинамические силы

Представление аэродинамических сил

$$F_{D} = C_{D} (M, \alpha) \times S \times \frac{\rho V^{2}}{2}$$

$$F_{L} = C_{L} (M, \alpha) \times S \times \frac{\rho V^{2}}{2}$$

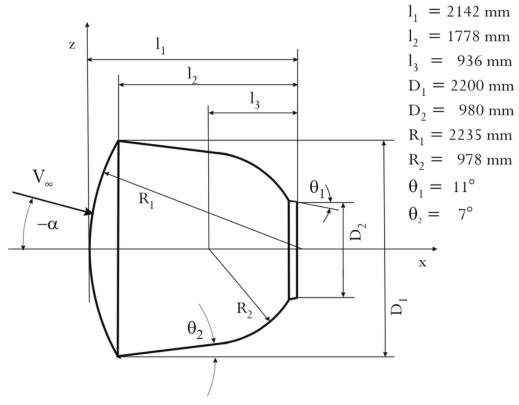
S - площадь Миделя (характерная площадь) спускаемого аппарата

V - скорость набегающего потока воздуха

ho - плотность воздуха (зависит от высоты полёта)

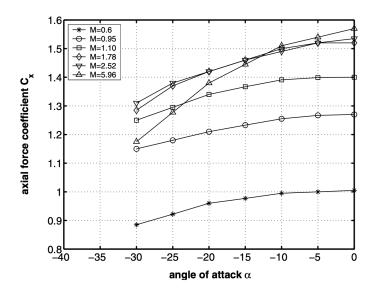
М - число Маха: отношение скорости набегающего потока воздуха к местной скорости звука

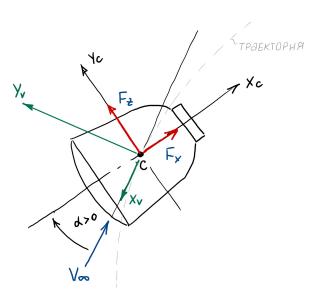
 C_D - коэффициент лобового сопротивления, зависящий от M, \pmb{lpha} , условий обтекания


 C_L - коэффициент подъемной силы сопротивления, зависящий от M, \pmb{lpha} , условий обтекания

Скоростной напор (имеет размерность давления)

$$q = \frac{\rho V^2}{2} [\Pi a]$$


Аэродинамические характеристики


Спускаемый аппарат космического корабля "Союз"

Claus Weiland Aerodynamic Data of Space Vehicles Springer Heidelberg New York Dordrecht London, 2014.

Аэродинамические характеристики

Плотность воздуха

Зависимость плотности воздуха от высоты может быть определена при помощи термодинамической модели атмосферы, экспериментальных данных.

```
MeD= StandardAtmosphereData[Quantity[10 000, "Feet"],
     "Density", Method -> "USStandardAtmosphere"]
    % // QuantityMagnitude
Out[-]= 0.9048484 \text{ kg/m}^3
Out[*]= 0.9048484
In[+]:= P = .;
    \rho[h_{-}] := QuantityMagnitude[StandardAtmosphereData[
          Quantity[h, "Meters"], "Density", Method -> "USStandardAtmosphere"]];
\textit{Plot}[\rho[h], \{h, 0, 100000\}, \textit{PlotRange} \rightarrow \textit{All}, \textit{PlotTheme} \rightarrow \{\textit{"Presentation"}, \textit{"FrameGrid"}\}, \}
     FrameLabel \rightarrow { "h, M", "\rho, K\Gamma/M<sup>3</sup>"}, ImageSize \rightarrow Large]
       1.2
       1.0
       8.0
Out[*]= 0.0
       0.4
       0.2
       0.0
                                40 000
                                            60 000
                                                        80 000
                                                                   100 000
                    20 000
wes Quantity[a, "Meters"] * Quantity[b, "Newtons"]
\textit{Out[o]} = abmN
```

Загрузка таблицы из файла

```
Infel= SetDirectory[NotebookDirectory[]];
   In[*]:= data = Import["atm.txt"];
   b(*)= data = Import["atm.txt", "table"];
   h[=]:= (data[[3;;, {1, 7}]])
  0 = \{ \{-2, 1.478\}, \{0, 1.225\}, \{2, 1.007\}, \{4, 0.8193\}, \{6, 0.6601\}, \{8, 0.5258\}, \{10, 0.4135\}, \{10, 0.4135\}, \{10, 0.4135\}, \{10, 0.4135\}, \{10, 0.4135\}, \{10, 0.4135\}, \{10, 0.4135\}, \{10, 0.4135\}, \{10, 0.4135\}, \{10, 0.4135\}, \{10, 0.4135\}, \{10, 0.4135\}, \{10, 0.4135\}, \{10, 0.4135\}, \{10, 0.4135\}, \{10, 0.4135\}, \{10, 0.4135\}, \{10, 0.4135\}, \{10, 0.4135\}, \{10, 0.4135\}, \{10, 0.4135\}, \{10, 0.4135\}, \{10, 0.4135\}, \{10, 0.4135\}, \{10, 0.4135\}, \{10, 0.4135\}, \{10, 0.4135\}, \{10, 0.4135\}, \{10, 0.4135\}, \{10, 0.4135\}, \{10, 0.4135\}, \{10, 0.4135\}, \{10, 0.4135\}, \{10, 0.4135\}, \{10, 0.4135\}, \{10, 0.4135\}, \{10, 0.4135\}, \{10, 0.4135\}, \{10, 0.4135\}, \{10, 0.4135\}, \{10, 0.4135\}, \{10, 0.4135\}, \{10, 0.4135\}, \{10, 0.4135\}, \{10, 0.4135\}, \{10, 0.4135\}, \{10, 0.4135\}, \{10, 0.4135\}, \{10, 0.4135\}, \{10, 0.4135\}, \{10, 0.4135\}, \{10, 0.4135\}, \{10, 0.4135\}, \{10, 0.4135\}, \{10, 0.4135\}, \{10, 0.4135\}, \{10, 0.4135\}, \{10, 0.4135\}, \{10, 0.4135\}, \{10, 0.4135\}, \{10, 0.4135\}, \{10, 0.4135\}, \{10, 0.4135\}, \{10, 0.4135\}, \{10, 0.4135\}, \{10, 0.4135\}, \{10, 0.4135\}, \{10, 0.4135\}, \{10, 0.4135\}, \{10, 0.4135\}, \{10, 0.4135\}, \{10, 0.4135\}, \{10, 0.4135\}, \{10, 0.4135\}, \{10, 0.4135\}, \{10, 0.4135\}, \{10, 0.4135\}, \{10, 0.4135\}, \{10, 0.4135\}, \{10, 0.4135\}, \{10, 0.4135\}, \{10, 0.4135\}, \{10, 0.4135\}, \{10, 0.4135\}, \{10, 0.4135\}, \{10, 0.4135\}, \{10, 0.4135\}, \{10, 0.4135\}, \{10, 0.4135\}, \{10, 0.4135\}, \{10, 0.4135\}, \{10, 0.4135\}, \{10, 0.4135\}, \{10, 0.4135\}, \{10, 0.4135\}, \{10, 0.4135\}, \{10, 0.4135\}, \{10, 0.4135\}, \{10, 0.4135\}, \{10, 0.4135\}, \{10, 0.4135\}, \{10, 0.4135\}, \{10, 0.4135\}, \{10, 0.4135\}, \{10, 0.4135\}, \{10, 0.4135\}, \{10, 0.4135\}, \{10, 0.4135\}, \{10, 0.4135\}, \{10, 0.4135\}, \{10, 0.4135\}, \{10, 0.4135\}, \{10, 0.4135\}, \{10, 0.4135\}, \{10, 0.4135\}, \{10, 0.4135\}, \{10, 0.4135\}, \{10, 0.4135\}, \{10, 0.4135\}, \{10, 0.4135\}, \{10, 0.4135\}, \{10, 0.4135\}, \{10, 0.4135\}, \{10, 0.4135\}, \{10, 0.4135\}, \{10, 0.4135\}, \{10, 0.4135\}, \{10, 0.4135\}, \{10, 0.4135\}, \{10, 0.4135\}, \{10, 0.4135\}, \{10, 0.4135\}, \{10, 0.4135\}, \{10, 0.4135\}, \{10, 0.4135\}, \{10, 0.4135\}, \{10, 0.4135\}, \{10, 0.4135\}, \{10, 0.4135\}, \{10, 0.4135\}, \{1
               \{12, 0.3119\}, \{14, 0.2279\}, \{16, 0.1665\}, \{18, 0.1216\}, \{20, 0.08891\}, \{22, 0.06451\},
              \{24, 0.04694\}, \{26, 0.03426\}, \{28, 0.02508\}, \{30, 0.01841\}, \{32, 0.01355\},
              \{34, 0.009887\}, \{36, 0.007257\}, \{38, 0.005366\}, \{40, 0.003995\}, \{42, 0.002995\},
              {44, 0.002259}, {46, 0.001714}, {48, 0.001317}, {50, 0.001027}, {52, 0.0008055},
              {54, 0.0006389}, {56, 0.0005044}, {58, 0.0003962}, {60, 0.0003096}, {62, 0.0002407},
               \{64, 0.000186\}, \{66, 0.0001429\}, \{68, 0.0001091\}, \{70, 0.00008281\}, \{72, 0.00006236\},
              \{74, 0.00004637\}, \{76, 0.0000343\}, \{78, 0.00002523\}, \{80, 0.00001845\},
               \{82, 0.00001341\}, \{84, 9.69 \times 10^{-6}\}, \{86, 6.955 \times 10^{-6}\}\}
   log(n) = \rho = Interpolation[%]
  Out(*)= InterpolatingFunction Domain: {{-2., 86.}} Output: scalar
   p[\rho] = \text{Plot}[\rho[h], \{h, 0, 86\}, \text{PlotRange} \rightarrow \text{All}]
- Таблица слишком "короткая" (до 86 км)
- Высота в километрах. В уравнениях движения высота в метрах.
   wi-- SetOptions[Plot, PlotTheme -> {"Presentation", "FrameGrid"}, ImageSize → Large];
           SetOptions[ParametricPlot,
                  PlotTheme -> {"Presentation", "FrameGrid"}, ImageSize → Large];
          SetOptions[ListPlot, PlotTheme -> {"Presentation", "FrameGrid"}, ImageSize → Large];
```

Уравнения движения

Уравнения движения

$$\begin{aligned} w_{\text{t}} &= q = \{V[t], \, r[t], \, \theta[t], \, s[t]\}; \\ w_{\text{t}} &= eq = \left\{ \\ & V'[t] == -g \, \text{Sin}[\theta[t]] - c_d \, S \, \frac{\rho[r[t] - Rz] \, V[t]^2}{2 \, m}, \\ & V[t] \times \theta'[t] == g \left(\frac{V[t]^2}{r[t] \, g} - 1 \right) \, \text{Cos}[\theta[t]] + c_L \, S \, \frac{\rho[r[t] - Rz] \, V[t]^2}{2 \, m}, \\ & s'[t] == \frac{V[t]}{r[t]} \, \text{Cos}[\theta[t]] \, Rz, \\ & r'[t] == V[t] \, \text{Sin}[\theta[t]] \\ & \}; \end{aligned}$$

Вывод уравнений приведен в книге:

В. А. Ярошевский Вход в атмосферу космических летательных аппаратов

Параметры системы

$$\begin{aligned} &\text{model} &\text{params =} \\ &\left\{c_d \to 1.5, \, c_L \to 0, \, S \to \frac{\pi \, 2.2^2}{4}, \, m \to 3000.0, \, g \to 9.807, \, Rz \to 6371\,000.0, \, h0 \to 100\,000.0\right\} \\ &\text{cut-} &\left\{c_d \to 1.5, \, c_L \to 0, \, S \to 3.801327, \, m \to 3000., \, g \to 9.807, \, Rz \to 6.371 \times 10^6, \, h0 \to 100\,000.\right\} \\ &\text{model} &\text{nu} = \left\{V[0] = 7000, \, \theta[0] = 0, \, r[0] = Rz + h0, \, s[0] = 0\right\}; \end{aligned}$$

$$\sqrt{\frac{\mu}{(Rz + h0)}}$$
 /. $\mu \rightarrow 398600.4415 \times 10^9$ //. params

Out[=]= 7848.437

$$\label{eq:params} \begin{split} \text{\tiny params} &= \left\{ c_\text{d} \rightarrow \text{1.3, } c_\text{L} \rightarrow \text{0.3, } \text{S} \rightarrow \frac{\pi \, \text{2.2}^2}{4} \text{, m} \rightarrow \text{3000.0,} \right. \\ &= \left. g \rightarrow 9.807 \text{, Rz} \rightarrow 6\,371\,000.0 \text{, ho} \rightarrow \text{100\,000.0, } \mu \rightarrow \text{398\,600.4415} \times \text{10}^9 \right\} \\ &= \left\{ \text{V[0]} &== \sqrt{\mu \, \big/ \, \left(\text{Rz} + \text{ho} \right)} \text{ , } \theta \text{[0]} &== 0 \text{, r[0]} == \text{Rz} + \text{ho, s[0]} == 0 \right\}; \\ &= \left\{ c_\text{d} \rightarrow \text{1.3, } c_\text{L} \rightarrow \text{0.3, S} \rightarrow \text{3.801327, m} \rightarrow \text{3000., g} \rightarrow \text{9.807, Rz} \rightarrow \text{6.371} \times \text{10}^6 \text{, ho} \rightarrow \text{100\,000., } \right. \\ &= \left. \mu \rightarrow \text{3.986004} \times \text{10}^{14} \right\} \end{split}$$

Ускорение свободного падения зависит от высоты полета.

$$\frac{\mu}{\left(Rz + h0\right)^2} //. \text{ params}$$

Out[*]= 9.51908

In[*]:= ρ [100 000]

Out[*]= 5.604×10^{-7}

Проинтегрируем уравнения движения до 450 секунды полета

```
In[*]:= tk = 1040;
     sol = NDSolve[{eq, nu} //. params, q, {t, 0, tk}]
\textit{Outp:} = \left\{ \left\{ V \, [\, t \,] \, \rightarrow \, InterpolatingFunction \left[ \begin{array}{c} \blacksquare \\ \hline \end{array} \, \begin{array}{c} Domain: \{ \{0, 1.04 \times 10^3 \} \} \end{array} \, \right] \, [\, t \,] \, , \right. \right.
         \theta[t] \rightarrow InterpolatingFunction \left[\begin{array}{c} \blacksquare \end{array}\right] Domain: {(0, 1.04 × 10<sup>3</sup>)} \left[\begin{array}{c} \blacksquare \end{array}\right] [t],
         p(c) Plot[(r[t] - Rz) * 0.001 /. params /. sol, {t, 0, tk}, FrameLabel → {"t, c", "h, KM"}]
         100
          80
          60
Out[∘]= €
          40
          20
           0
```

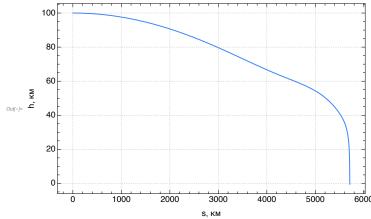
800

600

t, c

1000

Конечная высота


 $m(x) = (r[t] - Rz) * 0.001 /. params /. sol /. t \rightarrow tk$ $\textit{Out[=]=} \ \big\{ -0.4571043 \, \big\}$

400

200

Траектория от дистанции полета (по поверхности Земли)

 $M(r) = ParametricPlot[{s[t], (r[t] - Rz)} * 0.001 /. params /. sol, {t, 0, tk},$ FrameLabel \rightarrow {"s, KM", "h, KM"}, AspectRatio \rightarrow 1 / GoldenRatio, PlotRange \rightarrow All]

Траектория от дистанции полета (по поверхности Земли)

```
MG= Animate [ParametricPlot[{s[t], (r[t] - Rz)} * 0.001 /. params /. sol,
      \{t, 0, tk\}, FrameLabel \rightarrow \{"s, KM", "h, KM"\},
      AspectRatio \rightarrow 1/GoldenRatio, Epilog \rightarrow \{Red, PointSize[0.02],
         Point[\{s[t], (r[t] - Rz)\} * 0.001 /. params /. sol /. t <math>\rightarrow tt]\}], \{tt, 0, tk\}]
```

```
—— Ⅲ ◎≥ →
       ParametricPlot[s[t], r[t] - Rz] 0.001 / . params / . sol, <math>[t, 0, tk],
         \mbox{FrameLabel} \rightarrow \left\{ \mbox{s, KM, h, KM} \right\}, \mbox{AspectRatio} \rightarrow \frac{1}{\mbox{GoldenRatio}}
Out[ = ]=
         Epilog → {Red, PointSize[0.02],
            Point[\{s[t], r[t] - Rz\} 0.001 /. params /. sol /. t \rightarrow FE tt $37]
```

Скорость от высоты

 $\textit{ParametricPlot}\big[\{(r[t]-Rz)\text{, }V[t]\}\text{ \star 0.001 /. params /. sol, }\big\{t\text{, 0, tk}\big\}\text{,}$ FrameLabel \rightarrow {"h, KM", "V, M/c"}, AspectRatio \rightarrow 1/GoldenRatio] 6 , M/C 20

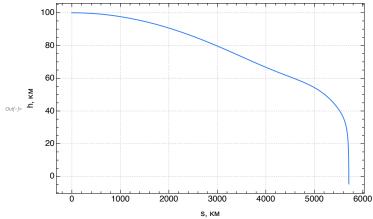
h, км

Управление процессом интегрирования

Остановка процесса численного интегрирования при достижении нулевой высоты. Функция WhenEvent

```
In[*]:= tk = 1100;
                  sol = NDSolve[
                              {
                                           eq, nu, WhenEvent[r[t] < Rz //. params, "StopIntegration"]
                                     } //. params, q, {t, 0, tk}
                   ... NDSolve: Event location failed to converge to the requested accuracy or precision within 100 iterations between t = 1035.196532461057° and t = 1035.2458548531633°
out_{t-1}=\left\{\left\{V\left[\mathtt{t}\right]
ight.
ight
                              \theta[t] \rightarrow InterpolatingFunction  Domain: {[0,, 1040,}]   ][t],
                              s[t] \rightarrow InterpolatingFunction  \bigcap Domain: {(0, 1040.)} \bigcap [t] }
  M_{\text{o}} = \text{tk} = \text{sol}[[1, 1, 2, 0, 1, 1, 2]]
Out[*]= 1035.222
   log(x) = r[t] - Rz /. sol /. params /. t \rightarrow tk
Out[*]= \left\{-9.126961 \times 10^{-8}\right\}
```

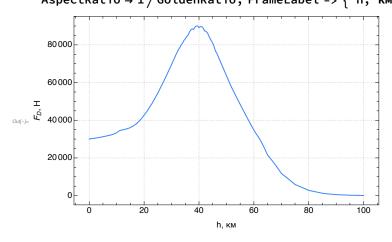
Управление процессом интегрирования


Остановка процесса численного интегрирования при достижении нулевой высоты.

```
Функция WhenEvent
```

```
mex= conditions = r[t] < Rz + # & /@ Range[0, 50000, 10000]
\text{cut} = \{r[t] < Rz, r[t] < 10000 + Rz, r[t] < 20000 + Rz, r[t] < 30000 + Rz, r[t] < 40000 + Rz, r[t] < 400000 + Rz, r[t] < 40000 + Rz, r[t] < 4
              r\,[\,t\,]\,\,<\,50\,000\,+\,Rz\,\}
 In[*]:= tk = 1100;
           {sol, velocities} = Reap[NDSolve[
                              eq, nu, WhenEvent[Evaluate[conditions //. params], {Sow[V[t]],
                                      If[Abs[r[t] - Rz] < 10 //. params, "StopIntegration", "CrossDiscontinuity"]}]</pre>
                          \} //. params, q, \{t, 0, tk\}
r[t] \rightarrow InterpolatingFunction  \bigcirc Domain: {[0, 1040.}] \bigcirc [t],
                      \theta[t] \rightarrow InterpolatingFunction  Domain: {(0, 1040.}) \theta[t],
                      \{\{4990.156, 3004.331, 1235.302, 440.5153, 180.7772, 99.62761\}\}
 n(∗):= velocities
out = \{ \{4990.156, 3004.331, 1235.302, 440.5153, 180.7772, 99.62761 \} \}
 lo(n) = tk = sol[[1, 1, 2, 0, 1, 1, 2]]
Out[*]= 1035.222
Mes = Reap[Sum[Sow[i^2] + 1, {i, 10}]]
\textit{Out(s)} = \{395, \{\{1, 4, 9, 16, 25, 36, 49, 64, 81, 100\}\}\}
```

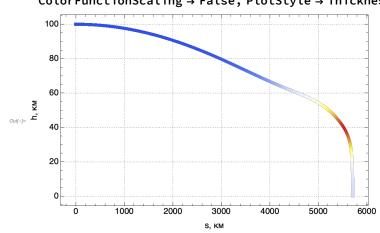
Траектория спуска


 $_{\textit{h(c)}=}$ ParametricPlot[{s[t], (r[t] - Rz)} * 0.001 /. params /. sol, {t, 0, tk}, FrameLabel \rightarrow {"s, κM ", "h, κM "}, AspectRatio \rightarrow 1/GoldenRatio]

Аэродинамическая сила

Аэродинамическая сила лобового сопротивления

ParametricPlot[$\left\{ (r[t] - Rz) * 0.001, c_d S \frac{\rho[r[t] - Rz] V[t]^2}{2} \right\} //. params /. sol, <math>\left\{ t, 0, tk \right\}$,


Аэродинамическая сила

Максимум аэродинамической силы на траектории спускаемого аппарата

FindMaximum
$$\left[c_d S \frac{\rho[r[t] - Rz] V[t]^2}{2} \right]$$
 /. params /. sol /. t \rightarrow tt, {tt, 100.0} Famax = %[[1]];

... FindMaximum: The line search decreased the step size to within the tolerance specified by AccuracyGoal and PrecisionGoal but was unable to find a sufficient increase in the function. You may need more than MachinePrecision digits of working precision to meet these tolerances

Out[*]= { 90 064.07, {tt \rightarrow 793.0997} }

Mela ColorData ["AvocadoColors"] [0.5]

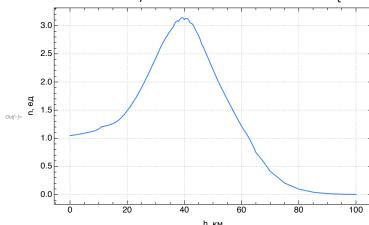
Infel= ColorData["TemperatureMap"][1]

Out[o]=

Перегрузка

Перегрузка

отношение абсолютной величины линейного ускорения, вызванного негравитационными силами, к ускорению свободного падения на поверхности Земли.


В рассматриваемой задаче негравитационные сила только одна -- это аэродинамическая сила

$$n = \frac{\sqrt{F_D^2 + F_L^2}}{m g}$$

$$\frac{1}{g \, m} \operatorname{Norm} \left[\{ c_d, c_L \} \, S \, \frac{\rho[r[t] - Rz] \, V[t]^2}{2} \right];$$

 $ParametricPlot\big[\{(r[t]-Rz)*0.001,\%\} //. \ params /. \ sol, \big\{t,0,tk\big\},$

AspectRatio → 1/GoldenRatio, FrameLabel -> $\{"h, \kappa M", "n, eд"\}$, PlotRange → All]

Задание

- 1. Модифицируйте программу интегрирования уравнений движения спускаемого аппарата в атмосфере, добавив зависимость плотности воздуха от высоты, загружаемой из файла.
- 2. Модифицируйте программу интегрирования уравнений движения спускаемого аппарата в атмосфере, добавив зависимость ускорения свободного падения д от высоты. На сколько отличается дальность полета спускаемого аппарата при учете и без учета изменения ускорения свободного
- 3. Постройте зависимость максимальной перегрузки, которую испытывает экипаж спускаемого аппарата в зависимости от начального угла входа в атмосферу (θ_0) в диапазоне от минус 15 до 0 градусов.
- 4. Постройте зависимость дальности точки приземления от начального угла входа в атмосферу (θ_0) в диапазоне от минус 15 до 0 градусов. Нарисуйте на одном графике траектории движения спускаемого аппарата при $\theta_0 = -15^{\circ}$ и при $\theta_0 = -2^{\circ}$.

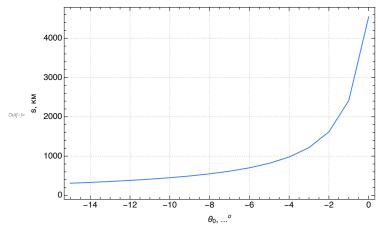
Пример

Функция расстояния до точки приземления в зависимости от начального угла наклона траектории.

```
M(r) = dist[\theta 0_?Number Q] := Module[{params, nu, neq, tk, sol},
          params = \left\{c_d \rightarrow \textbf{1.3,} \ c_L \rightarrow \textbf{0.0,} \ S \rightarrow \frac{\pi \, \textbf{2.2}^2}{4}, \ m \rightarrow \textbf{3000.0,} \right\}
             g \rightarrow 9.807, Rz \rightarrow 6371000.0, h0 \rightarrow 100000.0, \mu \rightarrow 398600.4415 \times 10^9;
          nu = \{V[0] = \sqrt{\mu/(Rz + h0)}, \theta[0] = \theta0, r[0] = Rz + h0, s[0] = 0\};
          neq = eq /. params;
          sol = NDSolve[{eq, nu,
                 WhenEvent[r[t] <= Rz //. params,
                    "StopIntegration", DetectionMethod → "Sign"]} //. params,
              q, {t, 0, 5000}];
          tk = sol[[1, 1, 2, 0, 1, 1, 2]];
          s[t] /. sol /. t \rightarrow tk
        |;
In[*]:= dist[0.0 °] * 0.001
     ... NDSolve: Event location failed to converge to the requested accuracy or precision within 100 iterations between t = 770.3860890330628' and t = 770.4553075372473'
Out[*]= \{4543.227\}
```

Пример

$$M(r) = \text{Plot}[\text{dist}[\theta\theta] * 0.001, \{\theta\theta, -15, 0\}, \text{PlotRange} \rightarrow \text{All}, \text{PlotPoints} \rightarrow 2]$$


... NDSolve: Event location failed to converge to the requested accuracy or precision within 100 iterations between t = 169.0470994011732' and t = 169.09481465878406'

Out[*]= \$Aborted

Flatten
$$\left[\left\{ \# * \frac{180}{\pi}, \text{ dist} [\#] * 0.001 \right\} \right] \& /@ \text{Range} [-15.0 °, 0, 1 °] \right]$$

ListPlot[%, FrameLabel \rightarrow {" θ_0 , ...°", "s, KM"}, Joined \rightarrow True]

- NDSolve: Event location failed to converge to the requested accuracy or precision within 100 iterations between t = 174.00913865484893' and t = 174.02645101327911'
- ... NDSolve: Event location failed to converge to the requested accuracy or precision within 100 iterations between t = 179.32966096041383' and t = 179.56695057323404
- General: Further output of NDSolve::evcvmit will be suppressed during this calculation.

