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Определение



Ортогональное преобразование

AR1 = λ1R1, λ1 = 1 (1)

cosφ =
trA− 1

2
(2)

R1 – направление оси
вращения
φ – угол поворота
9 элементов матрицы
определяют поворот,
описываемый 3
параметрами
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Четырёхмерный вектор

Рассмотрим элемент четырёхмерного пространства –
четырёхмерный вектор:

Λ = λ0i0 +λ1i1 +λ2i2 +λ3i3 (3)

где λ0, . . . ,λ3 – числа, i0, . . . , i3 – единичные орты.
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Алгебра кватернионов
Определим в пространстве операцию умножения

C = A ◦B

со следующими свойствами:
1 ассоциативность

A ◦ (B ◦ C) = (A ◦B) ◦ C (4)

2 дистрибутивность

(A+ B) ◦ (C+D) = A ◦ C+A ◦D+ B ◦ C+ B ◦D (5)

3 для любых скаляров λ, µ выполняется:

(λA) ◦ (µB) = λµA ◦B (6)
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Правила умножения

i0 ◦ ik = ik, k= 0,1, 2, 3,

ik ◦ i0 = ik, k= 0,1, 2,3,

ik ◦ ik = −i0, k= 1,2, 3,

i1 ◦ i2 = +i3,

i2 ◦ i3 = +i1,

i3 ◦ i1 = +i2,

i2 ◦ i1 = −i3,

i3 ◦ i2 = −i1,

i1 ◦ i3 = −i2
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Кватернион

Определение
При выполнении условий (4)-(6) и представленных правил
умножения, четырехмерные векторы (3) называются
кватернионами.

Кафедра Теоретической механики Кватернионы 7 / 43



Геометрическая интерпретация

1 i0 - вещественная единица,
2 i1, i2, i3 - орты некоторой системы координат евклидова

пространства,

Λ = λ0 +λ1i1 +λ2i2 +λ3i3 = λ0 +λλλ. (7)

3 В качестве абстрактной операции умножения
неодинаковых ортов, рассматривается операция
векторного произведения:

ik ◦ ik = −1, ik ◦ im = ik × im, k 6=m (8)
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Произведение кватернионов

Вычисление произведения кватернионов

Λ ◦B= (λ0 +λλλ) ◦ (b0 + b)
= (λ0 +λ1i1 +λ2i2 +λ3i3) ◦ (b0 + b1i1 + b2i2 + b3i3) =

λ0b0 +λ1b1i1 ◦ i1 +λ2b2i2 ◦ i2 +λ3b3i3 ◦ i3+
+λ0b+ b0λ+λ1b2i3 −λ1b3i2 −λ2b1i3 +λ2b3i1 +λ3b1i2 −λ3b2i1︸ ︷︷ ︸

λλλ×b

=

= λ0b0 −λλλ · b︸ ︷︷ ︸
скалярная часть

+λ0b+λλλb0 +λλλ× b︸ ︷︷ ︸
векторная часть

. (9)
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Произведение «чистых» кватернионов

Произведение кватернионов без вещественной части

Λ ◦B= (0+λλλ) ◦ (0+ b) = −λλλ · b+λλλ× b (10)

Умножение кватернионов не обладает свойством
коммутативности

Λ ◦B 6= B ◦Λ
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Свойства и определения



Определения

Сопряженный кватернион Λ:

Λ = λ0 +λ, Λ = λ0 −λλλ (11)

Норма кватерниона:

|Λ|= Λ ◦Λ = Λ ◦Λ = λ2
0 +λ

2
1 +λ

2
2 +λ

2
3. (12)

Обратный кватернион:

Λ−1 =
Λ

|Λ| , |Λ| 6= 0. (13)
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Свойства

Для произведения кватернионов выполняются следующие
свойства:

A ◦B= B ◦A. (14)

Норма произведения двух кватернионов равна произведению
норм кватернионов:

|A ◦B|= (A ◦B) ◦ (A ◦B) = A ◦B ◦B ◦A= |A||B|. (15)
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Свойства

Операция произведения кватернионов инвариантна по
отношению к ортогональным преобразованиям их векторной
части. То есть если:

C0 + C = (Λ0 +Λ) ◦ (B0 + B), (16)

то
C0 + C′ = (Λ0 +Λ

′) ◦ (B0 + B′), (17)

где C′ = AC, Λ′ = AΛ, B′ = AB, A – матрица поворота .
Это свойство позволяет переставлять местами операции
ортогонального преобразования и умножения кватернионов.
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Присоединённое отображение



Присоединённое отображение

Рассмотрим преобразование кватерниона R= r0 + r:

R′ = Λ ◦R ◦Λ |Λ|= 1. (18)

Преобразование (18), не меняет скалярной части кватерниона R

Λ ◦R ◦Λ = Λ ◦ (r0 + r) ◦Λ = Λ ◦ r0 ◦Λ+Λ ◦ r ◦Λ.

Первое слагаемое равно r0, а второе слагаемое не имеет
скалярной части, поскольку сопряженный кватернион
соответствующий второму слагаемому отличается от исходного
только знаком:

Λ ◦ r ◦Λ = Λ ◦ r ◦Λ = −Λ ◦ r ◦Λ.
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Присоединённое отображение

При преобразовании

R′ = Λ ◦R ◦Λ |Λ|= 1 (19)

сохраняется норма кватерниона R:

|R′|= |Λ ◦R ◦Λ|= |Λ||R||Λ|= |R|.
Скалярная часть кватерниона R при преобразовании (19) не
меняется, следовательно:

|r′|= |r|.
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Тригонометрическая форма записи

Кватернион Λ с единичной нормой может быть представлен в
виде:

Λ = λ0 +λe, | e |= 1, λ2
0 +λ

2 = 1.

Скаляры λ0 и λ определяются следующим образом:

λ0 = cos
φ

2
, λ = sin

φ

2
.

Λ = cos
φ

2
+ e sin

φ

2
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Преобразование вращения

Теорема
Пусть Λ и R нескалярные кватернионы; в этом случае величина

R′ = Λ ◦R ◦Λ (20)

есть кватернион, норма и скалярная часть которого равны
норме и скалярной части кватерниона R, а векторная часть R′
получается вращением векторной части R по конусу вокруг оси
вектора, определяемой векторной частью Λ.
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Преобразование вращения

Если

Λ = cos
φ

2
+ e sin

φ

2
,

то векторная часть R′ получится
вращением векторной части R
вокруг оси e на угол φ:

R′ = Λ ◦R ◦Λ

Кафедра Теоретической механики Кватернионы 20 / 43



Пример: поворот вокруг оси X

Пусть вектор e совпадает с ортом i исходной системы координат:

Λ = cos
φ

2
+ i sin

φ

2

Орты новой системы:

i′ = Λ ◦ i ◦Λ = (cos
φ

2
+ i sin

φ

2
) ◦ i ◦ (cos

φ

2
− i sin

φ

2
), (21)

j′ = Λ ◦ j ◦Λ = (cos
φ

2
+ i sin

φ

2
) ◦ j ◦ (cos

φ

2
− i sin

φ

2
), (22)

k′ = Λ ◦ k ◦Λ = (cos
φ

2
+ i sin

φ

2
) ◦ k ◦ (cos

φ

2
− i sin

φ

2
), (23)
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Матрица поворота

Орты новой системы:

i′ = i,

j′ = j cosφ + k sinφ,

k′ = −j sinφ + k cosφ.

Т.е. соответствующая матрица A имеет вид:

A=

1 0 0
0 cosφ − sinφ
0 sinφ cosφ

 . (24)
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Сложение поворотов



Активная точка зрения

Первый поворот:
R′ = A ◦R ◦A

Второй поворот:
R′′ = B ◦R′ ◦B

Результирующий поворот:

R′′ = B ◦A ◦R ◦A ◦B= C ◦R ◦ C

Кватернионы последовательных поворотов записываются в
исходном базисе и перемножаются в обратном порядке.

C = B ◦A
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Пример

Поворот вокруг оси x0 на
угол φ1 = π/2:

A= cos
π

4
+ ex sin

π

4

Поворот вокруг оси y0 на
угол φ2 = π/2

B= cos
π

4
+ ey sin

π

4
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Пример
Итоговое преобразование:

C = B ◦A

B ◦A= (cos
π

4
+ ey sin

π

4
)◦

(cos
π

4
+ ex sin

π

4
) = cos2 π

4
+

+
1
2

ex sin
π

2
+

1
2

ey sin
π

2
−ez sin2 π

4
=

=
1
2
+

1
2

ex +
1
2

ey − 1
2

ez =

C = cos
π

3
+
(ex + ey − ez)p

3
sin
π

3
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Пассивная точка зрения (поворот базиса)

Вектор в исходном базисе:

R= xe0
1 + ye0

2 + ze0
3

Вектор в новом базисе:

R= x′e1
1 + y′e1

2 + z′e1
3

Поворот базисных векторов:

e1
1 = A ◦ e0

1 ◦A, e1
2 = A ◦ e0

2 ◦A, e1
3 = A ◦ e0

3 ◦A, (25)

e0
1 = A ◦ e1

1 ◦A, e0
2 = A ◦ e1

2 ◦A, e0
3 = A ◦ e1

3 ◦A. (26)
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Пассивная точка зрения (поворот базиса)

Вектор R в исходном и в новом базисе:

R= e0
1x+ e0

2y+ e0
3z= A ◦ (e0

1x′ + e0
2y′ + e0

3z′) ◦A

Для

e0
1 =

10
0

 , e0
2 =

01
0

 , e0
3 =

00
1

 .
R= A ◦R′ ◦A ⇒ R′ = A ◦R′ ◦A (27)

Если преобразование единичных векторов базиса определяется
операцией (25), то преобразование координат неизменного
вектора R определяется обратной операцией (27).
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Параметры Родрига-Гамильтона

Определение
Компоненты кватерниона в базисе, преобразуемом этим
кватернионом, заданные в форме

λ0 = cos
φ

2
, λ1 = ex sin

φ

2
, λ2 = ey sin

φ

2
, λ3 = ez sin

φ

2
(28)

называются параметрами Родрига-Гамильтона.
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Параметры Родрига-Гамильтона

Кватернион, компонентами которого являются параметры
Родрига-Гамильтона, имеет одинаковые компоненты в исходной
и новой (повёрнутой) системах координат – это собственный
кватернион преобразования Λ∗.

Для преобразования
e0 Λ−→ e1,

компоненты кватерниона преобразования в новом базисе:

Λ(1) = Λ ◦Λ ◦Λ = Λ.
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Сложный поворот

Первый поворот e0 A−→ e1:

R′ = A ◦R ◦A

Второй поворот e1 B−→ e2:

R′′ = B ◦R′ ◦B

Результирующий поворот e0 C−→ e2:

R′′ = B ◦A ◦R ◦A ◦B= C ◦R ◦ C, C = A ◦B

Кватернионы последовательных поворотов записываются в
поворачиваемых базисах и перемножаются в прямом
порядке.
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Преобразования параметров



Кватернионы и ортогональные матрицы

Рассмотрим преобразование поворота

R′ = Λ ◦R ◦Λ
где R= xe1 + ye2 + ze3 и R′ = x′e1 + y′e2 + z′e3

R′ = (λ0 +λ1e1 +λ2e2 +λ3e3) ◦R ◦ (λ0 −λ1e1 −λ2e2 −λ3e3)

Координаты нового вектора:

x′ = (λ2
0 +λ

2
1 −λ2

2 −λ2
3)x+ 2(λ1λ2 −λ0λ3)y+ 2(λ1λ3 +λ0λ2)z,

y′ = 2(λ1λ2 +λ0λ3)x+ (λ
2
0 +λ

2
2 −λ2

1 −λ2
3)y+ 2(λ2λ3 −λ0λ1)z,

z′ = 2(λ1λ3 −λ0λ2)x+ 2(λ2λ3 +λ0λ1)y+ (λ
2
0 +λ

2
3 −λ2

1 −λ2
2)z.
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Кватернион→ матрица поворота

A=

 2(λ2
0 +λ

2
1)− 1 2(λ1λ2 −λ0λ3) 2(λ1λ3 +λ0λ2)

2(λ1λ2 +λ0λ3) 2(λ2
0 +λ

2
2)− 1 2(λ2λ3 −λ0λ1)

2(λ1λ3 −λ0λ2) 2(λ2λ3 +λ0λ1) 2(λ2
0 +λ

2
3)− 1


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Матрица поворота→ кватернион

λ2
0 =

trA+ 1
4

, (29)

λ2
i =

aii

2
− trA− 1

4
, i= 1,2, 3. (30)
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Кватернионы и углы Эйлера

Кватернионы поворотов вокруг осей z, x, z поворачиваемых
базисов:

Λψ = cos
ψ

2
+ ez sin

ψ

2
, (31)

Λθ = cos
θ

2
+ ex sin

θ

2
, (32)

Λφ = cos
φ

2
+ ez sin

φ

2
. (33)

Результирующий поворот

Λ = Λψ ◦Λθ ◦Λφ (34)
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Углы Эйлера (Z-X-Z)→ Λ

Для последовательности Z− X − Z (ψ,θ ,φ):

λ0 = + cos
θ

2
cos
φ +ψ

2
,

λ1 = + sin
θ

2
cos
φ −ψ

2
,

λ2 = − sin
θ

2
sin
φ −ψ

2
,

λ3 = + cos
θ

2
sin
φ +ψ

2
.
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Углы Брайнта (X-Y-Z)→ Λ
Для последовательности X − Y − Z (ψ,θ ,φ):

λ0 = cos
θ

2
cos
φ

2
cos
ψ

2
− sin

θ

2
sin
φ

2
sin
ψ

2
,

λ1 = sin
θ

2
sin
φ

2
cos
ψ

2
+ cos

θ

2
cos
φ

2
sin
ψ

2
,

λ2 = sin
θ

2
cos
φ

2
cos
ψ

2
− cos

θ

2
sin
φ

2
sin
ψ

2
,

λ3 = cos
θ

2
sin
φ

2
cos
ψ

2
+ sin

θ

2
cos
φ

2
sin
ψ

2
.
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Матричная интерпретация



Матричная интерпретация

Определим орты кватерниона при помощи матриц:

i0 =
�

1 0
0 1

�
, i1 =
�

0 i
i 0

�
, i2 =
�

0 −1
1 0

�
, i3 =
�

i 0
0 −i

�
где i=

p−1.
Кватернион может быть записан в виде:

Λ = λ0

�
1 0
0 1

�
+λ1

�
0 i
i 0

�
+λ2

�
0 −1
1 0

�
+λ3

�
i 0
0 −i

�
или

Λ =
�
λ0 + iλ3 −λ2 + iλ1

λ2 + iλ1 λ0 − iλ3

�
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Свойства

1 Перемножение кватернионов выполняется как обычное
перемножение матриц.

2 Сопряженный кватернион будет определятся, операцией
транспонирования исходной матрицы и замены элементов
на комплексно-сопряженные. Получившаяся матрица
называется эрмитово-сопряженной: Λ = Λ∗

3 Норма кватерниона вычисляется как определитель
матрицы.
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Параметры Кейли-Клейна

Кватернионы, задающие угловое положение твердого тела,
описываются комплексными матрицами Λ со следующими
свойствами:

ΛΛ∗ = E, det Λ = 1.

Обозначив
a= λ0 + iλ3, b= λ2 + iλ1,

матрицу кватерниона можно записать в виде:

Λ =

�
a −b
b a

�
.

Параметры a и b называются параметрами Кейли-Клейна.
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