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Уравнения движения



Уравнения движения

Решения уравнений движения твёрдого тела

Динамические уравнения движения тела вокруг центра масс:
Jxω̇x − (Jy − Jz)ωyωz = Mx,

Jyω̇y − (Jz − Jx)ωzωx = My,

Jzω̇z − (Jx − Jy)ωxωy = Mz.

(1)

Для уравнений (1) найдены аналитические решения только для
нескольких частных случаев [1]:

Случай Эйлера;
Случай Лагранжа;
Случай Ковалевской;
Случай Горячева-Чаплыгина;
Случай Гесса.
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Уравнения движения

Случай Эйлера

Главный момент внешних сил равен нулю.

J · ω̇+ω× J ·ω= 0; (2)

скалярная форма уравнений:
Jxω̇x − (Jy − Jz)ωyωz = 0,

Jyω̇y − (Jz − Jx)ωzωx = 0,

Jzω̇z − (Jx − Jy)ωxωy = 0.

(3)
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Первые интегралы



Первые интегралы

Первые интегралы

Интеграл энергии:

ω · (J · ω̇+ω× J ·ω) = 0 ⇒ ω · J · ω̇= 0 ⇒
(ω · J ·ω) = Jxω

2
x + Jyω

2
y + Jzω

2
z = 2T = const (4)

Интеграл кинетического момента:

J ·ω · (J · ω̇+ω× J ·ω) = 0 ⇒ J ·ω · J · ω̇= 0 ⇒

(J ·ω)2 = L2 = const (5)
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Первые интегралы

Скалярная форма первых интегралов

Интеграл энергии:

Jxωx
2 + Jyωy

2 + Jzωz
2 = 2T (6)

Интеграл кинетического момента:

J2
xωx

2 + J2
yωy

2 + J2
zωz

2 = L2 = 2DT (7)

Выражения (6) и (7) определяют в главной центральной системе
координат тела два эллипсоида.

Ax2 +By2 +Cz2 = H2

Кафедра теоретической механики Случай Эйлера 7



Полодии



Полодии

Полодии [2]

Линии пересечения эллипсоида
энергии и эллипсоида инерции
определяют полодии –
геометрическое место вектора
угловой скорости.
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Полодии

Пределы изменения величины D (Jz < Jy < Jx)

Умножим интеграл энергии (6) на Jx и вычтем из интеграла
кинетического момента (7):

Jx(Jxω
2
x + Jyω

2
y + Jzω

2
z)− J2

xω
2
x − J2

yω
2
y − J2

zω
2
z = 2JxT− 2DT (8)

Jy(Jx − Jy)ω
2
y + Jz(Jx − Jz)ω

2
z = 2T(Jx −D) (9)

Умножим интеграл энергии (6) на Jz и вычтем из интеграла
кинетического момента (7):

Jz(Jxω
2
x + Jyω

2
y + Jzω

2
z)− J2

xω
2
x − J2

yω
2
y − J2

zω
2
z = 2JxT− 2DT (10)

Jx(Jx − Jz)ω
2
x + Jy(Jy − Jz)ω

2
y = 2T(D− Jz) (11)

Левая часть (11) и (9) всегда больше нуля, поэтому

Jz ≤D≤ Jx, (Jz < Jy < Jx) (12)
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Полодии

Уравнения полодий

Умножая интеграл энергии на Jx,Jz,Jy и вычитая результат из
интеграла кинетического момента, получим три уравнения
полодий для трех плоскостей:

yz : Jy(Jx − Jy)ω
2
y + Jz(Jx − Jz)ω

2
z = 2T(Jx −D) (13)

xy : Jx(Jx − Jz)ω
2
x + Jy(Jy − Jz)ω

2
y = 2T(D− Jz) (14)

xz : Jx(Jx − Jy)ω
2
x − Jz(Jy − Jz)ω

2
z = 2T(D− Jy) (15)

Уравнения (14) и (13) – уравнение эллипсов.
Уравнение (15) – уравнение гипербол.
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Полодии

Полодии

Значениям

D = Jx,

D = Jy,

D = Jz

соответсвуют оси перманентного
вращения, совпадающие с
главными осями инерции x2,y2 и z2
соответственно.
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Полодии

Полодии

Значению D = Jy отвечают две
особые полодии – сепаратрисы,
разделяющие другие полодии на
четыре области.
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Полодии

Полодии

Полодиии, охватывающие ось z2
(D< Jy).

Полодиии, охватывающие ось x2
(D> Jy).
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Полодии

Полодии

YouTube

RuTube
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Геометрическая интерпретация Пуансо

Геометрическая интерпретация

Проекция вектора угловой скорости тела на направление
кинетического момента постоянна:

ω · (J ·ω) = 2T = const. (16)

Любое приращение вектора угловой скорости перпендикулярно
вектору L:

L ·∆ω= 0. (17)

Уравнение (17) определяет в инерциальном пространстве неизменную
плоскость. Расстояние от центра эллипсоида энергии до плоскости –
2T/L
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Геометрическая интерпретация Пуансо

Геометрическая интерпретация

Движение твёрдого тела вокруг неподвижной точки можно
представить как качение эллипсоида энергии тела по неизменяемой
плоскости, при этом геометрический центр эллипсоида энергии
закреплен на расстоянии 2T/L выше этой плоскости [2].
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Геометрическая интерпретация Пуансо

Геометрическая интерпретация

YouTube

RuTube
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Устойчивость вращений вокруг главных осей

Вращение вокруг оси x2 (Jz < Jy < Jx)

Рассмотрим твёрдое тело, вращающееся вокруг главной оси с
максимальным моментом инерции – x2, с угловой скоростью ω0.
Пусть проекции угловой скорости получили малые возмущения:

ωx =ω0 +δx, ωy = 0+δy, ωz = 0+δz.

Уравнения движения
Jxδ̇x − (Jy − Jz)δyδz = 0,

Jyδ̇y − (Jz − Jx)δz(ω0 +δx) = 0,

Jzδ̇z − (Jx − Jy)δy(ω0 +δx) = 0.

(18)

δ∗δ∗→ 0.
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Устойчивость вращений вокруг главных осей

Вращение вокруг оси x2 (Jz < Jy < Jx)

Пренебрегая малыми второго порядка, получим:
Jxδ̇x = 0,

Jyδ̇y − (Jz − Jx)δzω0 = 0,

Jzδ̇z − (Jx − Jy)δyω0 = 0.

(19)

Из 1-го уравнения следует: δx = const.
Из 2-го и 3-го уравнений следует:

Jyδ̈y −ω2
0

(Jz − Jx)(Jx − Jy)

Jz
δy = 0.

Jzδ̈z −ω2
0

(Jz − Jx)(Jx − Jy)

Jy
δz = 0.
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Устойчивость вращений вокруг главных осей

Вращение вокруг оси x2 (Jz < Jy < Jx)

δ̈y +ω
2
0

(Jx − Jz)(Jx − Jy)

JyJz
δy = 0. (20)

δ̈z +ω
2
0

(Jx − Jz)(Jx − Jy)

JyJz
δz = 0. (21)

Вид решений линейных уравнений (20) и (21) зависит от знака
множителя при δy и δz. При Jz < Jy < Jx:

ω2
0

(Jx − Jz)(Jx − Jy)

JyJz
> 0,

следовательно решения (20) и (21) имеют вид:

δy = ay sin(λt+ ϵy), δz = az sin(λt+ ϵz)

Вращение вокруг оси x2 устойчиво.
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Устойчивость вращений вокруг главных осей

Вращение вокруг оси z2 (Jz < Jy < Jx)

Для вращения вокруг оси с минимальным моментом инерции:

δ̈x +ω
2
0

(Jy − Jz)(Jx − Jz)

JxJy
δx = 0. (22)

δ̈y +ω
2
0

(Jy − Jz)(Jx − Jz)

JxJy
δy = 0. (23)

При Jz < Jy < Jx:

ω2
0

(Jx − Jz)(Jx − Jy)

JyJz
> 0,

следовательно решения (22) и (23) имеют вид:

δx = ax sin(λt+ ϵx), δy = ay sin(λt+ ϵy)

Вращение вокруг оси z2 устойчиво.
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Устойчивость вращений вокруг главных осей

Вращение вокруг оси y2 (Jz < Jy < Jx)

Рассмотрим твёрдое тело, вращающееся вокруг главной оси со
средним моментом инерции – y2, с угловой скоростью ω0.
Пусть проекции угловой скорости получили малые возмущения:

ωx = 0+δx, ωy =ω0 +δy, ωz = 0+δz.

Уравнения движения
Jxδ̇x − (Jy − Jz)(ω0 +δy)δz = 0,

Jyδ̇y − (Jz − Jx)δzδx = 0,

Jzδ̇z − (Jx − Jy)δx(ω0 +δy) = 0.

(24)

δ∗δ∗→ 0.
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Устойчивость вращений вокруг главных осей

Вращение вокруг оси y2 (Jz < Jy < Jx)

Пренебрегая малыми второго порядка, получим:
Jxδ̇x − (Jz − Jx)δzω0 = 0,

Jyδ̇y = 0,

Jzδ̇z − (Jx − Jy)δxω0 = 0.

(25)

Из 2-го уравнения следует: δy = const.
Из 1-го и 3-го уравнений следует:

δ̈x +ω
2
0

(Jz − Jy)(Jx − Jy)

JxJz
δx = 0.

δ̈z +ω
2
0

(Jz − Jy)(Jx − Jy)

JxJz
δz = 0.
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Устойчивость вращений вокруг главных осей

Вращение вокруг оси y2 (Jz < Jy < Jx)

δ̈x +ω
2
0

(Jz − Jy)(Jx − Jy)

JxJz
δx = 0. (26)

δ̈z +ω
2
0

(Jz − Jy)(Jx − Jy)

JxJz
δz = 0. (27)

При Jz < Jy < Jx:

ω2
0

(Jz − Jy)(Jx − Jy)

JxJz
< 0,

следовательно решения (26) и (27) имеют вид:

δx = C1eλt +C2e−λt, δy = C3eλt +C4e−λt

Вращение вокруг оси y2 неустойчиво.
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Интегрирование уравнений движения Эллиптические функции

Эллиптический интеграл

Неполный эллиптическиий интеграл Лежандра первого рода:

F(φ,m) = u =

∫ φ
0

dθp
1−m sin2 θ

, 0≤m≤ 1; (28)

в форме Якоби:

F(x,m) =

∫ x
0

dzÆ
(1− z2)(1−mz2)

. (29)

Полный эллиптическиий интеграл Лежандра первого рода:

K(m) = F(π/2,m) = u =

∫ π/2
0

dθp
1−m sin2 θ

, 0≤m≤ 1; (30)

в форме Якоби:

K(m) =

∫ 1
0

dzÆ
(1− z2)(1−mz2)

. (31)
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Интегрирование уравнений движения Эллиптические функции

Эллиптические функции

Для интеграла

F(φ,m) = u =

∫ φ
0

dθp
1−m sin2 θ

, 0≤m≤ 1

определены следующие эллиптические функции Якоби:
синус-амплитуды

snu = sinφ (32)

косинус-амплитуды
cnu = cosφ (33)

дельта-амплитуды
dnu =
Æ

1−mcos2φ (34)
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Интегрирование уравнений движения Определение угловых скоростей

Определение угловых скорости ωx, ωz

Из уравнений

yz : Jy(Jx − Jy)ω
2
y + Jz(Jx − Jz)ω

2
z = 2T(Jx −D), (35)

xy : Jx(Jx − Jz)ω
2
x + Jy(Jy − Jz)ω

2
y = 2T(D− Jz) (36)

получим выражения для угловых скоростей ωx, ωz

ω2
x =

Jy(Jy − Jz)

Jx(Jx − Jz)
(a2 −ω2

y), (37)

ω2
z =

Jy(Jx − Jy)

Jz(Jx − Jz)
(b2 −ω2

y), (38)

где

a2 =
2T(D− Jz)

Jy(Jy − Jz)
, b2 =

2T(Jx −D)

Jy(Jx − Jy)
. (39)
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Интегрирование уравнений движения Определение угловых скоростей

Случай D< Jy, a2 < b2

После подстановки

ω2
x =

Jy(Jy − Jz)

Jx(Jx − Jz)
(a2 −ω2

y) иω
2
z =

Jy(Jx − Jy)

Jz(Jx − Jz)
(b2 −ω2

y),

в
Jyω̇y = (Jz − Jx)ωzωx

получим:∫
dωyq

(a2 −ω2
y)(b2 −ω2

y)
= ±(t− t0)

√√√(Jx − Jy)(Jy − Jz)

JxJz
(40)
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Интегрирование уравнений движения Определение угловых скоростей

Случай D< Jy, a2 < b2

∫
dωy/aq

(1−ω2
y/a2)(1−ω2

y/b2)
= ±b(t− t0)

√√√(Jx − Jy)(Jy − Jz)

JxJz
(41)

После замен

x =
ωy

a
, k =

a
b

, τ= (t− t0)

√√√2T(Jx −D)(Jy − Jz)

JxJyJz

уравнение (41) принимает вид:∫
dxÆ

(1− x2)(1− k2x2)
= ±τ (42)
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Интегрирование уравнений движения Определение угловых скоростей

Случай D< Jy, a2 < b2

∫
dxÆ

(1− x2)(1− k2x2)
= ±τ (43)

Решение (43) в эллиптических функциях Якоби:

x = ± snτ → ωy = ±
√√√2T(D− Jz)

Jy(Jy − Jz)
snτ (44)
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Интегрирование уравнений движения Определение угловых скоростей

Случай D< Jy, a2 < b2

Подставляя (44) в

ω2
x =

Jy(Jy − Jz)

Jx(Jx − Jz)
(a2 −ω2

y) иω
2
z =

Jy(Jx − Jy)

Jz(Jx − Jz)
(b2 −ω2

y),

с учётом тождеств

sn2τ+ cn2τ= 1, dn2τ+ k2sn2τ= 1,

решения для проекций ωx,ωz будут иметь вид:

ωx = ±
√√√2T(D− Jz)

Jx(Jx − Jz)
cnτ, ωz = ±
√√√2T(Dx −D)

Jz(Jx − Jz)
dnτ. (45)
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Интегрирование уравнений движения Определение угловых скоростей

Случай D< Jy, a2 < b2

ωx = ±
√√√2T(D− Jz)

Jx(Jx − Jz)
cnτ, (46)

ωy = ±
√√√2T(D− Jz)

Jy(Jy − Jz)
snτ, (47)

ωz = ±
√√√2T(Jx −D)

Jz(Jx − Jz)
dnτ. (48)

где
k =

a
b

,

τ= (t− t0)

√√√2T(Jx −D)(Jy − Jz)

JxJyJz
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Интегрирование уравнений движения Определение угловых скоростей

Случай D> Jy, a2 > b2

ωx = ±
√√√2T(D− Jz)

Jx(Jx − Jz)
cnτ, (49)

ωy = ±
√√√2T(Jx −D)

Jy(Jx − Jy)
snτ, (50)

ωz = ±
√√√2T(Jx −D)

Jz(Jx − Jz)
dnτ. (51)

где:

k =
b
a

,

τ= (t− t0)

√√√2T(Jx − Jy)(D− Jz)

JxJyJz
.
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Интегрирование уравнений движения Определение угловых скоростей

Случай D = Jy, a = b

Если a = b, то k = 1 и эллиптический интеграл упрощается∫
dxÆ

(1− x2)(1− kx2)
= ±τ →
∫

dx
1− x2 = ±τ (52)

∫
dx

1− x2 = ±τ → x = ± thτ → ωy = ±
√√√2T

Jy
thτ (53)
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Интегрирование уравнений движения Определение угловых скоростей

Случай D = Jy, a = b

ωx = ±
√√√2T(Jy − Jz)

Jx(Jx − Jz)

1
chτ

, (54)

ωy = ±
√√√2T

Jy
thτ, (55)

ωz = ±
√√√2T(Jx − Jy)

Jz(Jx − Jz)

1
chτ

. (56)

где:

chτ=
eτ+ e−τ

2
,

thτ=
e2τ − 1
e2τ+ 1

.
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Интегрирование кинематических уравнений



Интегрирование кинематических уравнений Случай D< Jy

Кинематические уравнения (D< Jy)

Проекции вектора кинетического
момента L на оси связанной
системы координат:

Lx = L sinϑ sinφ,

Ly = L sinϑ cosφ,

Lz = Lcosϑ.

(57)

Выражения для проекций вектора
L в главных осях инерции:

Lx = Jxωx,

Ly = Jyωy,

Lz = Jzωz.

(58)
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Интегрирование кинематических уравнений Случай D< Jy

Кинематические уравнения


Jxωx = L sinϑ sinφ,

Jyωy = L sinϑ cosφ,

Jzωz = Lcosϑ.

(59)

Угол нутации:

cosϑ =
Jzωz

L
(60)

Угол собственного вращения:

tanφ =
Jxωx

Jyωy
(61)
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Интегрирование кинематических уравнений Случай D< Jy

Определение угла прецессии

Из кинематического уравнения

ωz = ψ̇cosϑ+ φ̇ (62)

выражается производная угла прецессии

ψ̇=
ωz − φ̇
cosϑ

=
L
Jz

�
1− φ̇

ωz

�
. (63)

Выражение для ϑ, входящее в (63):

cosϑ =
Jz

L
ωz = ±Jz

L

√√√2T(Jx −D)

Jz(Jx − Jz)
dnτ= ±
√√√Jz(Jx −D)

D(Jx − Jz)
dnτ (64)
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Интегрирование кинематических уравнений Случай D< Jy

Определение угла прецессии

Для определения φ̇ продиффиренцируем

tanφ = ±
√√√Jx(Jy − Jz)

Jy(Jx − Jz)

cnτ
snτ

(65)

φ̇ = ±cos2φ
√√√Jx(Jy − Jz)

Jy(Jx − Jz)

dnτ
sn2τ

dτ
dt

(66)

Замены в (66)

cos2φ =
1

1+ tgφ2 , dnτ= ±
√√√ Jz(Jx − Jz)

2T(Jx −D)
ωz,

dτ
dt

=

√√√2T(Jx −D)(Jy − Jz)

JxJyJz
.
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Интегрирование кинематических уравнений Случай D< Jy

Определение угла прецессии

Выражение для φ̇ после замен

φ̇ =ωz

�
Jy

Jy − Jz
sn2τ+

Jx

Jx − Jz
cn2τ

�−1
(67)

Подставляя (67) и выражение для cosϑ (64)

cosϑ =
Jz

L
ωz = ±Jz

L

√√√2T(Jx −D)

Jz(Jx − Jz)
dnτ= ±
√√√Jz(Jx −D)

D(Jx − Jz)
dnτ

в (63)

ψ̇=
ωz − φ̇
cosϑ

=
L
Jz

�
1− φ̇

ωz

�
,

получим:

ψ̇=ωz
L
Jz

Jzsn2τ/(Jy − Jz)+ Jzcn2τ/(Jx − Jz)

Jysn2τ/(Jy − Jz)+ Jxcn2τ/(Jx − Jz)
(68)
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Интегрирование кинематических уравнений Случай D< Jy

Углы Эйлера (D< Jy)

cosϑ = ±
√√√Jz(Jx −D)

D(Jx − Jz)
dnτ

tanφ = ±
√√√Jx(Jy − Jz)

Jy(Jx − Jz)

cnτ
snτ

ψ̇=
L
Jz

Jzsn2τ/(Jy − Jz)+ Jzcn2τ/(Jx − Jz)

Jysn2τ/(Jy − Jz)+ Jxcn2τ/(Jx − Jz)

Знак φ̇ совпадает со знаком ωz. ψ̇ > 0.
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Интегрирование кинематических уравнений Случай D> Jy

Система координат (D> Jy)
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Интегрирование кинематических уравнений Случай D> Jy

Углы Эйлера (D> Jy)

cosϑ = ±
√√√Jx(D− Jz)

D(Jx − Jz)
dnτ, (69)

tanφ = ±
√√√Jy(Jx − Jz)

Jz(Jx − Jy)

snτ
cnτ

, (70)

φ̇ = −ωx

�
Jy

Jx − Jy
sn2τ+

Jz

Jx − Jz
cn2τ

�−1
, (71)

ψ̇=
L
Jx

Jxsn2τ/(Jx − Jy)+ Jxcn2τ/(Jx − Jz)

Jysn2τ/(Jx − Jy)+ Jzcn2τ/(Jx − Jz)
. (72)

Знак φ̇ противоположен знаку ωz. ψ̇ > 0.
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Регулярная прецессия

Движение осесимметричного твёрдого тела
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Регулярная прецессия

Угловые скорости

Система уравнений движения осесимметричного твёрдого тела
(Jx = Jy):

Jxω̇x − (Jy − Jz)ωyωz = 0,

Jyω̇y − (Jz − Jx)ωzωx = 0,

Jzω̇z − (Jx − Jy)ωxωy = 0.

→


Jxω̇x − (Jy − Jz)ωyωz = 0,

Jyω̇y − (Jz − Jx)ωzωx = 0,

Jzω̇z = 0.

(73)

Из 3-го уравнения системы (73) следует

ωz =ωz0 = const (74)
ω̇x − (Jx − Jz)

Jx
ωyωz = ω̇x − νωy = 0,

ω̇y +
(Jz − Jx)

Jy
ωzωx = ω̇x + νωx = 0,

ν=
wz0(Jx − Jz)

Jx
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Регулярная прецессия

Угловые скорости

Решение системы �
ω̇x − νωy = 0,

ω̇y + νωx = 0,
ν=

wz0(Jx − Jz)

Jx
(75)

имеет вид:
ωx =ωx0 cosν(t− t0)+ωy0 sinν(t− t0), (76)

ωy =ωy0 cosν(t− t0)−ωx0 sinν(t− t0). (77)

Первый интеграл системы (75)

ω2
x +ω

2
y = Ω

2 = const (78)
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Регулярная прецессия

Определение углов Эйлера [3]

Сравнивая выражения для проекций вектора кинетического момента L
на оси главного центрального базиса:

Lx = L sinϑ0 sinφ,

Ly = L sinϑ0 cosφ,

Lz = Lcosϑ0.

и


Lx = Jxωx,

Ly = Jxωy,

Lz = Jzωz.

(79)

Lcosϑ0 = Jzωz → cosϑ0 = cosθ0 =
Jzωz0

L
(80)

Угол нутации при движении осесимметричного твёрдого тела по
инерции остаётся постоянным.
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Регулярная прецессия

Определение угла ψ

Подставляя выражение для ωy из кинематических уравнений
ωx = ψ̇ sinϑ0 sinφ,

ωy = ψ̇ sinϑ0 cosφ,

ωz =ωz0 = ψ̇cosϑ0 + φ̇.

(81)

в уравнение
L sinθ0 cosφ = Jxωy,

получим

ψ̇=
L
Jx

= const= n (82)

ψ=ψ0 + nt (83)
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Регулярная прецессия

Определение угла φ

Из уравнения
ωz =ωz0 = ψ̇cosϑ0 + φ̇,

с учётом

ψ̇=
L
Jx

= const= n,

следует
φ̇ =ωz0 − ncosϑ0 (84)

φ = n1t+φ0, n1 =ωz0 − ncosϑ0 (85)
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Регулярная прецессия

Регулярная прецессия

Углы Эйлера:

cosϑ = cosϑ0 =
Jzωz0

L
= const,

ψ=ψ0 + nt,
φ = φ0 + n1t.

где:

n =
L
Jx

,

n1 =ωz0 − ncosϑ0.
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